CO2 methanation mechanism over Ni/Y2O3: an in situ diffuse reflectance infrared Fourier transform spectroscopic study
Supported Ni catalysts are active in CO2 methanation. It is important to understand the reaction mechanism for the development of highly-active catalysts. In this study, we investigated the reaction pathways of CO2 methanation over Ni/Y2O3 and Ni/Al2O3 based on the adsorbates observed by diffuse ref...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-01, Vol.23 (9), p.5551-5558 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supported Ni catalysts are active in CO2 methanation. It is important to understand the reaction mechanism for the development of highly-active catalysts. In this study, we investigated the reaction pathways of CO2 methanation over Ni/Y2O3 and Ni/Al2O3 based on the adsorbates observed by diffuse reflectance infrared Fourier transform spectroscopy. For Ni/Al2O3, linear and bridged CO adsorbates were converted to nickel carbonyl hydride and/or formyl species, which would be further hydrogenated to methane. In contrast, the formation of formate adsorbates was specifically confirmed over Ni/Y2O3 under the CO2 methanation condition. The hydrogen molecule was activated by dissociatively-adsorbing on Ni particles. Then, the hydrogenation of formate adsorbates by the activated hydrogen species proceeded sequentially to form methane. The observed bridged CO species would not be a major intermediate for Ni/Y2O3. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d0cp06257j |