Bio-inspired wrinkle microstructures for random lasing governed by surface roughness
A method for fabricating bio-inspired scattering substrates based on polydimethylsiloxane (PDMS) for spatially incoherent random lasing is presented. The leaves of monstera and piper sarmentosum plants are used to mold PDMS polymer to form wrinkle-like scattering substrates, which are then used with...
Gespeichert in:
Veröffentlicht in: | Optics letters 2021-03, Vol.46 (5), p.1033-1036 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for fabricating bio-inspired scattering substrates based on polydimethylsiloxane (PDMS) for spatially incoherent random lasing is presented. The leaves of monstera and piper sarmentosum plants are used to mold PDMS polymer to form wrinkle-like scattering substrates, which are then used with a liquid gain medium for random lasing. Scattering is attributed to the surface roughness (
) of the samples. The rougher sample with 5.2 µm
shows a two-mode stable lasing with a 2 nm linewidth and a lower threshold fluence of 0.2
/
compared to the sample with smaller
(3.6 µm) with a linewidth of 5 nm and a threshold fluence of 0.5
/
. The waveguide theory substantiates the results of incoherent random lasing through a relation between the microstructure feature size and the mean free path. Power Fourier transform analysis is used to deduce the resonant cavity length of 180 µm in the rougher sample, and the observed variations in cavity length with
validate the optical feedback. PDMS being hydrophobic, the scattering substrate can be reused by wiping off the gain medium. This Letter paves the way for facile fabrication methods of bio-inspired random lasers for sensing and imaging applications. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.417148 |