Obtaining glycosaminoglycans from tilapia (oreochromis niloticus) scales and evaluation of its anticoagulant and cytotoxic activities: Glycosaminoglycans from tilapia scales: anticoagulant and cytotoxic activities

Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food research international 2021-02, Vol.140, p.110012-110012
Hauptverfasser: de Moura, Heloisa C, Novello, Claudio R, Balbinot-Alfaro, Evellin, Düsman, Elisângela, Barddal, Helyn P O, Almeida, Igor V, Vicentini, Veronica E P, Prentice-Hernández, Carlos, Alfaro, Alexandre T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glycosaminoglycans were extracted, purified, and fractionated. The fractions that indicated the presence of uronic acid and sulfated GAGs were characterized by electrophoresis, NMR, and degree of sulfation (DS). The extraction process using the papain enzyme had a yield of 0.86%. Fraction V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with DS of 0.146. FV demonstrated anticoagulant potential, as it was able to increase aPTT time. FV showed a cytotoxic effect for HTC metabolizing cells at 24, 48, and 72 h. However, it did not show activity for neuroblastoma cells in any of the evaluated times. The results indicate that the tilapia scales are a possible source for obtaining chondroitin sulfate, with potential use as anticoagulant and cytotoxic/antitumor.
ISSN:1873-7145
DOI:10.1016/j.foodres.2020.110012