Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H2 Production under Visible-Light Irradiation
Metal–organic frameworks (MOFs) are important photocatalytic materials for H2 production. To clarify the structure–function relationship and improve the photocatalytic activity, herein we explored a series of porphyrin-based zirconium MOFs (PCN-H2/Pt x:y , where x:y = 4:1, 3:2, 2:3, and 0:1) contain...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-03, Vol.60 (6), p.3988-3995 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal–organic frameworks (MOFs) are important photocatalytic materials for H2 production. To clarify the structure–function relationship and improve the photocatalytic activity, herein we explored a series of porphyrin-based zirconium MOFs (PCN-H2/Pt x:y , where x:y = 4:1, 3:2, 2:3, and 0:1) containing different ratios of H2TCPP and PtIITCPP [TCPP = tetrakis(4-carboxyphenyl)porphyrinate] as isostructural ligands and Zr6 clusters as nodes. Under visible-light irradiation, PCN-H2/Pt0:1 shows the highest average H2 evolution reaction rate (351.08 μmol h–1 g–1), which decreases along with lowering of the ratio of PtIITCPP in the PCN-H2/Pt x:y series. The differences in photocatalytic activity are attributed to more uniformly dispersed Pt2+ ions in PCN-H2/Pt0:1, which promotes charge transfer from porphyrins (photosensitizers) to PtII ions (catalytic centers), leading to efficient charge separation in the MOF materials. The bifunctional MOFs with photosensitizers and catalytic centers provide new insight for the design and application of porphyrin-based photocatalytic systems for visible-light-driven H2 production. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c00041 |