Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki–Heck Couplings under Aqueous Micellar Catalysis Conditions

Powdery, spherical nanoparticles (NPs) containing ppm levels of palladium ligated by t-Bu3P, derived from FeCl3, upon simple exposure to water undergo a remarkable alteration in their morphology leading to nanorods that catalyze Mizoroki–Heck (MH) couplings. Such NP alteration is general, shown to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-03, Vol.143 (9), p.3373-3382
Hauptverfasser: Pang, Haobo, Hu, Yuting, Yu, Julie, Gallou, Fabrice, Lipshutz, Bruce H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Powdery, spherical nanoparticles (NPs) containing ppm levels of palladium ligated by t-Bu3P, derived from FeCl3, upon simple exposure to water undergo a remarkable alteration in their morphology leading to nanorods that catalyze Mizoroki–Heck (MH) couplings. Such NP alteration is general, shown to occur with three unrelated phosphine ligand-containing NPs. Each catalyst has been studied using X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) analyses. Couplings that rely specifically on NPs containing t-Bu3P-ligated Pd occur under aqueous micellar catalysis conditions between room temperature and 45 °C, and show broad substrate scope. Other key features associated with this new technology include low residual Pd in the product, recycling of the aqueous reaction medium, and an associated low E Factor. Synthesis of the precursor to galipinine, a member of the Hancock family of alkaloids, is suggestive of potential industrial applications.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c11484