Searching Images for Consensus: Can AI Remove Observer Variability in Pathology?

One of the major obstacles in reaching diagnostic consensus is observer variability. With the recent success of artificial intelligence, particularly the deep networks, the question emerges as to whether the fundamental challenge of diagnostic imaging can now be resolved. This article briefly review...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2021-10, Vol.191 (10), p.1702-1708
Hauptverfasser: Tizhoosh, Hamid R, Diamandis, Phedias, Campbell, Clinton J V, Safarpoor, Amir, Kalra, Shivam, Maleki, Danial, Riasatian, Abtin, Babaie, Morteza
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the major obstacles in reaching diagnostic consensus is observer variability. With the recent success of artificial intelligence, particularly the deep networks, the question emerges as to whether the fundamental challenge of diagnostic imaging can now be resolved. This article briefly reviews the problem and how eventually both supervised and unsupervised AI technologies could help to overcome it.
ISSN:1525-2191
DOI:10.1016/j.ajpath.2021.01.015