Trap-Induced Dense Monocharged Perfluorinated Electret Nanofibers for Recyclable Multifunctional Healthcare Mask

Recently, wearable and breathable healthcare devices for air filtering and real-time vital signs monitoring have become urgently needed since virus and particulate matter (PM) cause serious health issues. Herein, we present a trap-induced dense monocharged hybrid perfluorinated electret nanofibrous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-03, Vol.15 (3), p.5486-5494
Hauptverfasser: Lin, Shizhe, Wang, Shuixiang, Yang, Wei, Chen, Shuwen, Xu, Zisheng, Mo, Xiwei, Zhou, He, Duan, Jiangjiang, Hu, Bin, Huang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, wearable and breathable healthcare devices for air filtering and real-time vital signs monitoring have become urgently needed since virus and particulate matter (PM) cause serious health issues. Herein, we present a trap-induced dense monocharged hybrid perfluorinated electret nanofibrous membrane (HPFM) for highly efficient ultrafine PM0.3 removal with an efficiency of 99.712% under low pressure drop (38.1 Pa) and high quality factor of 0.154 Pa–1. Furthermore, a recyclable multifunctional healthcare mask is constructed by integrating the HPFM-based nanogenerator, which realizes efficient PM0.3 filtering and wireless real-time human respiration monitoring simultaneously. More importantly, the performance of this mask is still relatively stable even at 100%RH humidity and 92 °C temperature conditions for 48 h, which infers that it can be reused after disinfection. The strategy of fabricating HPFM provides an approach to obtain charge-rich stable electret materials, and the design of multifunctional masks demonstrates their potential application for future personal protection and health monitoring devices.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c00238