Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells

Cellular heterogeneity and the lack of metastatic biomarkers limit the diagnosis of and development of therapies for metastatic triple-negative breast cancer (TNBC). Thus, development of new clinically relevant markers is urgently needed. By using RNA-seq analysis, we found that nerve growth factor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2021-03, Vol.40 (12), p.2165-2181
Hauptverfasser: Wu, Renfei, Li, Koukou, Yuan, Mingheng, Luo, Kathy Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular heterogeneity and the lack of metastatic biomarkers limit the diagnosis of and development of therapies for metastatic triple-negative breast cancer (TNBC). Thus, development of new clinically relevant markers is urgently needed. By using RNA-seq analysis, we found that nerve growth factor receptor (NGFR) was highly expressed in metastatic lung clones of MDA-MB-231 cells. This high level of NGFR expression was necessary for TNBC cells to grow into tumor spheres under nonadhesive conditions, resist anoikis, promote primary tumor growth and increase metastasis in mice. NGFR was also expressed at a high level in a greater number of TNBC patients (45%) than non-TNBC patients (23%), enriched in higher grade tumors, and negatively correlated with the overall survival of TNBC patients. Mechanistic analysis indicated that NGFR exerted its prometastatic effects by binding with neurotrophic receptor tyrosine kinase 3 (TrkC) mainly through a ligand-independent manner, which activated the MEK–ERK1–ZEB1 and PI3K–AKT signaling pathways, increased the level of fibronectin, and decreased the expression of PUMA. Notably, we observed that NGFR expression in TrkC-positive metastatic clones reduced cellular sensitivity to anti-Trk therapy. Moreover, WNT family member 5a (WNT5A) and TrkC activated NGFR transcription in a ZEB1-dependent manner. Taken together, this study identified NGFR as a novel driver for transforming TNBC into higher grade metastatic tumors. Our findings provide the basis for the future development of NGFR as a diagnostic and prognostic marker for determining the metastatic potential of TNBC and as a therapeutic target for treating TNBC patients.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-021-01691-y