Continuous production of enzymes under carbon-limited conditions by Trichoderma harzianum P49P11
Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzi...
Gespeichert in:
Veröffentlicht in: | Fungal biology 2021-03, Vol.125 (3), p.177-183 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzianum to produce extracellular enzymes. All chemostat cultures were carried out at a fixed dilution rate of 0.05 h−1. Experiments using glucose, fructose/glucose and sucrose were performed in duplicate. Glucose condition was found to induce the production of enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-d-glucopyranoside (PNPGase). A concentration of 20 g/L of glucose in the feed provided the highest productivity (1048 ± 16 U/mol h). Extracellular polysaccharides were considered the source of inducers. Based on the obtained results, a new PNPGase production process was developed using mainly glucose. This process raises interesting possibilities of synthesizing the inducer substrate and the induced enzymes in a single step using an easily assimilated carbon source under carbon-limited conditions.
•New enzyme production process under carbon-limited conditions.•Continuous production of enzymes using glucose as the main carbon source.•Enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-d-glucopyranoside.•Fragments from extracellular polysaccharides could have acted as inducer substrates. |
---|---|
ISSN: | 1878-6146 1878-6162 |
DOI: | 10.1016/j.funbio.2020.10.008 |