Lightning production of hydrocarbons and HCN on Titan: Laboratory measurements
Many hydrocarbon species have been detected in the atmosphere of Titan. It is possible that lightning activity is occurring in the troposphere and that it contributes to the hydrocarbon inventory. Measurements of the chemical yields of hydrogen cyanide, acetylene, ethylene, ethane, and propane from...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 1988-10, Vol.76 (1), p.125-134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many hydrocarbon species have been detected in the atmosphere of Titan. It is possible that lightning activity is occurring in the troposphere and that it contributes to the hydrocarbon inventory. Measurements of the chemical yields of hydrogen cyanide, acetylene, ethylene, ethane, and propane from simulated lightning discharges are reported. A comparison of the experimental results with those based on thermodynamic equilibrium assumptions shows significant disagreement and implies that theories based solely on thermodynamic equilibrium are inadequate. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the observed hydrocarbon species, the predicted abundance of ethylene is too low by a factor of 10 to 40. While some ethylene will be produced by charged-particle chemistry, the production of ethylene by lightning and its subsequent diffusion into the stratosphere appears to be an adequate source. |
---|---|
ISSN: | 0019-1035 1090-2643 |
DOI: | 10.1016/0019-1035(88)90145-5 |