The role of glutamate transporter-1 in firing activity of locus coeruleus neurons and nociception in rats

Locus coeruleus (LC) is considered to be the main source of norepinephrine in the central nervous system (CNS) and plays important role in relieving pain in the body. Changes in the activity of synaptic excitatory amino acid transporters (EAATs) would be an applicable way to regulate synaptic transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2021-04, Vol.239 (4), p.1287-1294
Hauptverfasser: Nozad, Abdollah, Hamidi, Nasrin, Amani, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Locus coeruleus (LC) is considered to be the main source of norepinephrine in the central nervous system (CNS) and plays important role in relieving pain in the body. Changes in the activity of synaptic excitatory amino acid transporters (EAATs) would be an applicable way to regulate synaptic transmission in the LC. In the present study, we examined the role of astrocytic glutamate transporter−1 (GLT1) in the firing activity of LC neurons and the sensation of pain in rats. Male Wistar rats were divided into three control (CNT), ceftriaxone (CFT) and dihydrokainic acid (DHK) groups. Animals were given intraperitoneal injections for nine consecutive days after which the electrophysiological and behavioral experiments were performed to determine the single-unit activity of LC neurons and pain sensation. Results of this study revealed that CFT as a well−known up−regulator of GLT1 expression decreases the latency of pain sensation in rats but inhibition of GLT1 activity by DHK showed no significant effects. Furthermore, the results obtained by single-unit recording from LC showed a significant decrease in evoked response in CFT group compared to the CNT group. Therefore, this study suggests that GLT1 might be considered as a potential therapeutic target for pain modulation in the future.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-021-06065-0