Anti-insulin resistance effect of constituents from Senna siamea on zebrafish model, its molecular docking, and structure–activity relationships
Senna siamea has been used as an antidiabetic drug since antiquity. With regard to traditional Thai medicine, the use of S. siamea was described for diabetes therapy . To understand the molecular mechanism regarding insulin resistance. Pure compounds were isolated from wood extract. We studied their...
Gespeichert in:
Veröffentlicht in: | Journal of natural medicines 2021-06, Vol.75 (3), p.520-531 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Senna siamea
has been used as an antidiabetic drug since antiquity. With regard to traditional Thai medicine, the use of
S. siamea
was described for diabetes therapy
.
To understand the molecular mechanism regarding insulin resistance. Pure compounds were isolated from wood extract. We studied their biological activities on insulin-resistance using an in vivo zebrafish model. We also performed an in silico study; molecular docking, and in vitro study by taking advantage of the enzyme inhibitory activities of α-glucosidase, PTP1B, and DPP-IV. Based on the preliminary investigation that ethyl acetate and ethanol extracts have potent effects against insulin resistance on zebrafish larvae, five compounds were isolated from two fractions following: resveratrol, piceatannol, dihydropiceatannol, chrysophanol, and emodin. All of the isolated compounds had anti-insulin resistance effects on zebrafish larvae. Resveratrol, piceatannol, and dihydropiceatannol also demonstrated inhibitory effects against α-glucosidase. Chrysophanol and emodin inhibited PTP1B activity, while resveratrol showed a DPP-IV inhibition effect via the molecular docking. The results of enzyme assay were similar. In conclusions,
S. siamea
components demonstrated effects against insulin resistance. The chemical structure displayed identical biological activity to that of the compounds. Therefore,
S. siamea
wood extract and their components are potential therapeutic options in the treatment of diabetes.
Graphic abstract |
---|---|
ISSN: | 1340-3443 1861-0293 |
DOI: | 10.1007/s11418-021-01490-5 |