Enhancing anammox resistance to low operating temperatures with the use of PVA gel beads

Low temperatures, or a sudden decrease in operating temperature, can seriously inhibit anammox activity, it is, therefore, important to maintain anammox activities at a low temperature. In this study, the use of gel beads to enhance the resistance of anammox biomass to a low temperature was investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-06, Vol.774, p.144826-144826, Article 144826
Hauptverfasser: Wang, Jinxing, Liang, Jidong, Sun, Li, Shen, Jianqing, He, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low temperatures, or a sudden decrease in operating temperature, can seriously inhibit anammox activity, it is, therefore, important to maintain anammox activities at a low temperature. In this study, the use of gel beads to enhance the resistance of anammox biomass to a low temperature was investigated. The performance of three reactors: R1 without gel beads; R2 with polyvinyl alcohol/chitosan (PVA/CS); R3 with PVA/CS/Fe, was studied and compared in a temperature transition from 35 to 8 °C. When the operating temperature was ≥25 °C, there was little difference in nitrogen removal among the three reactors. Decreasing the temperature to < 25 °C created obvious difference between R1 and R2/R3. R1 had a nitrogen removal efficiency (NRE) of 33.1 ± 25.3% at 10 °C, significantly lower than that of R2 (90.5 ± 2.5%) or R3 (87.7 ± 11.1%). Unclassified Candidatus Brocadiaceae was the dominant genus at 10 °C, with an abundance of 44.4, 56.5 and 58.7% in R1, R2 and R3, respectively. These differences were attributed to the use of gel beads, which promoted the granulation of both the non-immobilized sludge and the immobilized biomass, resulting in higher anammox activities in R2/R3. The non-immobilized sludge of R1 was dominated by small particles (
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.144826