Synthesis and Phase Stability of the High-Entropy Carbide (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C under Extreme Conditions

As a novel ultrahigh temperature ceramic, the stability of a high-entropy transition metal carbide under extreme conditions is of great concern to its application. Despite the intense research, the available high-pressure experimental results are few so far. Here, we synthesized the nanocrystalline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-03, Vol.60 (6), p.3807-3813
Hauptverfasser: Guan, Shixue, Liang, Hao, Wang, Qiming, Tan, Lijie, Peng, Fang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a novel ultrahigh temperature ceramic, the stability of a high-entropy transition metal carbide under extreme conditions is of great concern to its application. Despite the intense research, the available high-pressure experimental results are few so far. Here, we synthesized the nanocrystalline (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C by a high-pressure solid-state reaction successfully. Meanwhile, synchrotron radiation X-ray diffraction experiments were carried out to explore the phase stability and mechanical response under high pressure. The single cubic B1 phase structure of the high-entropy carbide is retained under extreme hydrostatic pressure. An abnormal cubic-to-cubic phase transition was observed unexpectedly under nonhydrostatic compression. This result reflects the effect of the severe lattice distortion of the initial B1 phase high-entropy carbide and the shear strain caused by deviatoric stress under high nonhydrostatic pressure. The physical mechanism about electronic/magnetic characteristics behind findings is an interesting issue for future studies.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c03319