Improving electrocardiogram-based detection of rare genetic heart disease using transfer learning: An application to phospholamban p.Arg14del mutation carriers
The pathogenic mutation p.Arg14del in the gene encoding Phospholamban (PLN) is known to cause cardiomyopathy and leads to increased risk of sudden cardiac death. Automatic tools might improve the detection of patients with this rare disease. Deep learning is currently the state-of-the-art in signal...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2021-04, Vol.131, p.104262-104262, Article 104262 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pathogenic mutation p.Arg14del in the gene encoding Phospholamban (PLN) is known to cause cardiomyopathy and leads to increased risk of sudden cardiac death. Automatic tools might improve the detection of patients with this rare disease. Deep learning is currently the state-of-the-art in signal processing but requires large amounts of data to train the algorithms. In situations with relatively small amounts of data, like PLN, transfer learning may improve accuracy. We propose an ECG-based detection of the PLN mutation using transfer learning from a model originally trained for sex identification. The sex identification model was trained with 256,278 ECGs and subsequently finetuned for PLN detection (155 ECGs of patients with PLN) with two control groups: a balanced age/sex matched group and a randomly selected imbalanced population. The data was split in 10 folds and 20% of the training data was used for validation and early stopping. The models were evaluated with the area under the receiver operating characteristic curve (AUROC) of the testing data. We used gradient activation for explanation of the prediction models. The models trained with transfer learning outperformed the models trained from scratch for both the balanced (AUROC 0.87 vs AUROC 0.71) and imbalanced (AUROC 0.0.90 vs AUROC 0.65) population. The proposed approach was able to improve the accuracy of a rare disease detection model by transfer learning information from a non-manual annotated and abundant label with only limited data available.
•We proposed a transfer learning approach, from a model initially trained for sex prediction, for PLN detection on ECGs.•We have shown that pre-training the model improved significantly the PLN detection on ECGs.•The improved detection was observed both on a balanced and imbalanced dataset.•The QRS complex was found to be the most important region in ECGs for PLN identification. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2021.104262 |