Beyond the static corrugation model: Dynamic surfaces with the embedded atom method
The D2 on Cu(111) system has for many years been one of the major benchmark systems for surface scientists. Generating surface configurations using the embedded atom method (EAM), we investigate the quality of the chemically accurate static corrugation model (SCM) for including surface temperature e...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-02, Vol.154 (7), p.074710-074710 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The D2 on Cu(111) system has for many years been one of the major benchmark systems for surface scientists. Generating surface configurations using the embedded atom method (EAM), we investigate the quality of the chemically accurate static corrugation model (SCM) for including surface temperature effects, with a focus on the random displacement approach to its distorted surface generation. With this EAM potential, we also treat the Cu(111) surface of our system fully dynamically and shine a further light on not only the quality of the SCM sudden approach but also the limited effect of energy exchange with the surface. Reaction and (in)elastic scattering probability curves, as well as simulated time-of-flight spectra, show good agreement with both earlier works and experimental results, with surface reactions showing a preference for surface atoms displaced away from the incoming molecule. The good agreement with the non-static surface model also further establishes the limited effect of energy exchange on not only the reaction but also on the elastic and inelastic scattering probabilities, even though some molecular translational energy is deposited into the surface. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0036611 |