Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants
•Foliar application of chitosan nanoparticle enhanced growth in finger millet.•Significant increase in yield, mineral content observed in treated plants.•Chitosan nanoparticle triggered the defense enzymes in leaves of finger millet. The aim of the present study is to evaluate the potential of chito...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2021-04, Vol.258, p.117691-117691, Article 117691 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Foliar application of chitosan nanoparticle enhanced growth in finger millet.•Significant increase in yield, mineral content observed in treated plants.•Chitosan nanoparticle triggered the defense enzymes in leaves of finger millet.
The aim of the present study is to evaluate the potential of chitosan and chitosan nanoparticles (ChNPs) in enhancing the growth and yield of finger millet under greenhouse condition. Foliar application of ChNPs significantly enhanced the growth, yield and mineral content (Fe, Zn, Mn, P, Ca, Mg) when compared to the chitosan and untreated control. ChNPs also induced several defense related enzymes (chitinase, β-1,3 glucanase, chitosanase, protease inhibitors, peroxidase, polyphenol oxidase) in leaves of finger millet plants their by enhancing the innate immune response. This quantitative difference in defense enzymes was also detected qualitatively on polyacrylamide gels. Our results suggest that ChNPs application can be used as an ecofriendly approach to enhance yield and mineral content in finger millet for sustainable production. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2021.117691 |