A method for computing bessel function integrals
A method for numerical calculation of integrals containing Bessel functions of integer or integer plus one-half order is described. The calculation involves first a one-dimensional Fourier sine or cosine transform followed by evaluation of the coefficient of the Chebyshev series of the Fourier-trans...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1988-04, Vol.75 (2), p.334-344 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for numerical calculation of integrals containing Bessel functions of integer or integer plus one-half order is described. The calculation involves first a one-dimensional Fourier sine or cosine transform followed by evaluation of the coefficient of the Chebyshev series of the Fourier-transformed function in the case of the Bessel function and evaluation of the Legendre expansion coefficient in the case of the spherical Bessel function. A generalization of the method for the computation of an integral involving the Bessel function of arbitrary real order v is presented as well. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/0021-9991(88)90116-7 |