Light-driven Locomotion of Underwater Bubbles on Ultrarobust Paraffin-impregnated Laser-ablated Fe3O4‑doped Slippery Surfaces
Manipulating underwater bubbles (UGBs) is realized on morphology-tailored or stimuli-responsive slippery lubricant-impregnated porous surface (SLIPS). Unfortunately, the volatile lubricants (e. g., silicone oil, ferrofluid) greatly decrease their using longevity. Designed is light-responsive paraffi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-02, Vol.13 (7), p.9272-9280 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manipulating underwater bubbles (UGBs) is realized on morphology-tailored or stimuli-responsive slippery lubricant-impregnated porous surface (SLIPS). Unfortunately, the volatile lubricants (e. g., silicone oil, ferrofluid) greatly decrease their using longevity. Designed is light-responsive paraffin-infused Fe3O4-doped slippery surface (LR-PISS) by incorporation of hybrid lubricants and superhydrophobic micropillar-arrayed elastometric membranes resulted from one-step femtosecond laser vertically scanning. Upon LR-PISS, the dynamic motion control bwteen pinning and sliding along free routes over UGB could be realized by alternately loading/discharging NIR-trigger. The underlying principle is that when the NIR was applied, UGB would be actuated to slide along the NIR trace because the irradiated domain melts for a slippery surface within 1.0 s. Once the NIR is removed, the liquefied paraffin would be reconfigured to solid phase for pinning a moving UGB within 0.5 s. Newly explored hydrokinetics imparts us with capability of steering UGBs to arrange any desirable patterns and switch light-path behaving as the light-control-light optical shutter. In comparison with previously reported SLIPS, current LR-PISS unfolds unparalleled ultrarobust antidisturbance ability even in flowing liquid ambient. More significantly, even subjected to physical damage, underwater LR-PISS is capable of in situ self-healing within 13 s under the assistance of remote NIR. The results here could inspire the design of robust bubble manipulator and further boost their applications in optofluidics and all-optical modulators. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c22717 |