Unsupervised Eye Blink Artifact Detection From EEG With Gaussian Mixture Model

Eye blink is one of the most common artifacts in electroencephalogram (EEG) and significantly affects the performance of the EEG related applications, such as epilepsy recognition, spike detection, encephalitis diagnosis, etc. To achieve an accurate and efficient eye blink detection, a novel unsuper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-08, Vol.25 (8), p.2895-2905
Hauptverfasser: Cao, Jiuwen, Chen, Long, Hu, Dinghan, Dong, Fang, Jiang, Tiejia, Gao, Weidong, Gao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eye blink is one of the most common artifacts in electroencephalogram (EEG) and significantly affects the performance of the EEG related applications, such as epilepsy recognition, spike detection, encephalitis diagnosis, etc. To achieve an accurate and efficient eye blink detection, a novel unsupervised learning algorithm based on a hybrid thresholding followed with a Gaussian mixture model (GMM) is presented in this paper. The EEG signal is priliminarily screened by a cascaded thresholding method built on the distributions of signal amplitude, amplitude displacement, as well as the cross channel correlation. Then, the channel correlation of the two frontal electrodes (FP1, FP2), the fractal dimension, and the mean of amplitude difference between FP1 and FP2, are extracted to characterize the filtered EEGs. The GMM trained on these features is applied for the eye blink detection. The performance of the proposed algorithm is studied on two EEG datasets collected by the Temple University Hospital (TUH) and the Children's Hospital, Zhejiang University School of Medicine (CHZU), where the datasets are recorded from epilepsy and encephalitis patients, and contain a lot of eye blink artifacts. Experimental results show that the proposed algorithm can achieve the highest detection precision and F1 score over the state-of-the-art methods.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2021.3057891