Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone
Site-selective C–H functionalization in chemical feedstocks is a challenging and useful reaction in the broad field of chemical research. Here, we report a modular photochemical platform for the site-selective C–H pyridylation of unactivated hydrocarbons via the unique synergistic effects of triplet...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-02, Vol.143 (7), p.3003-3012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Site-selective C–H functionalization in chemical feedstocks is a challenging and useful reaction in the broad field of chemical research. Here, we report a modular photochemical platform for the site-selective C–H pyridylation of unactivated hydrocarbons via the unique synergistic effects of triplet excited anthraquinone and an amidyl radical-based reverse hydrogen atom transfer (RHAT) agent. The selective pyridylation of tertiary and secondary C(sp3)–H bonds in abundant chemical feedstocks was achieved by employing various N-aminopyridinium salts in a highly selective fashion, thus providing a new catalytic system for the direct construction of high-value-added compounds under ambient reaction conditions. Moreover, this operationally simple protocol is applicable to a variety of linear-, branched-, and cyclo-alkanes and more complex molecules with high degrees of site selectivity under visible-light conditions, which provides rapid and straightforward access to versatile synthons for upgrading feedstocks under mild, metal-free reaction conditions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.1c00549 |