ϕ(ρz) Distributions in Bulk and Thin Film Samples for EPMA. Part 1: A Modified ϕ(ρz) Distribution for Bulk Materials, Including Characteristic and Bremsstrahlung Fluorescence

Electron probe microanalysis is a nondestructive technique widely used to determine the elemental composition of bulk samples. This was extended to layered specimens, with the development of appropriate software. The traditional quantification method requires the use of matrix correction procedures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2021-04, Vol.27 (2), p.266-283
Hauptverfasser: Moy, Aurélien, Fournelle, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron probe microanalysis is a nondestructive technique widely used to determine the elemental composition of bulk samples. This was extended to layered specimens, with the development of appropriate software. The traditional quantification method requires the use of matrix correction procedures based upon models of the ionization depth distribution, the so-called ϕ(ρz) distribution. Most of these models have led to commercial quantification programs but only few of them allow the quantification of layered specimens. Therefore, we developed BadgerFilm, a free open-source thin film program available to the general public. This program implements a documented ϕ(ρz) model as well as algorithms to calculate fluorescence in bulk and thin film samples. Part 1 of the present work aims at describing the operation of the implemented ϕ(ρz) distribution model and validating its implementation against experimental measurements and Monte Carlo simulations on bulk samples. The program has the ability to predict absolute X-ray intensities that can be directly compared to Monte Carlo simulations. We demonstrate that the implemented model works very well for bulk materials. And as will be shown in Part 2, BadgerFilm predictions for thin film specimens are also shown to be in good agreements with experimental and Monte Carlo results.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927620024915