Effect of main ingredients of Danhong Injection against oxidative stress induced autophagy injury via miR-19a/SIRT1 pathway in endothelial cells

Autophagy plays an important role in cellular homeostasis. Oxidative stress stimulated endothelial excessive autophagy has been proposed as a major risk factor for cardiovascular diseases (CVD). Danhong injection (DHI), the most prescribed traditional Chinese medicine for the treatment of CVD, has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytomedicine (Stuttgart) 2021-03, Vol.83, p.153480-153480, Article 153480
Hauptverfasser: Guo, Yan, Yang, Jie-hong, Cao, Shi-dong, Gao, Cheng-xian, He, Yu, Wang, Yu, Wan, Hai-tong, Jin, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autophagy plays an important role in cellular homeostasis. Oxidative stress stimulated endothelial excessive autophagy has been proposed as a major risk factor for cardiovascular diseases (CVD). Danhong injection (DHI), the most prescribed traditional Chinese medicine for the treatment of CVD, has been shown to elicit vascular protective effects. However, its underlying mechanisms remain poorly defined. This study aimed to uncover the protective effects of DHI and its main bioactive components on autophagy injury of human umbilical vein endothelial cells (HUVECs) induced by H2O2 and reveal the possible mechanisms. HUVECs were treated with different concentrations of DHI or its components, after exposed to H2O2. The protective effects of DHI and its components in H2O2-induced HUVECs were examined via a cytotoxicity assay and western blot. Apoptosis was evaluated with flow cytometry. Autophagy flux was assessed by transmission electron microscopy and LC3 plasmid transfection. Besides, the role miR-19a and SIRT1 in DHI and components-mediated anti-autophagy responses were validated with inhibitors transfection. Our results showed that DHI and its components do have different effects on different aspects. In terms of HUVECs survival rate, Salvianolic acid B (Sal B) and danshensu (DSS) performed better than DHI, Hydroxysafflor yellow A (HSYA) and Tanshinone IIA (DST-IIA). As for the proliferation effect on HUVECs, only Sal B has the most obvious performance as same as 3MA. Besides, DHI and its components are sensitive and superior in regulating and balancing ROS concentration. Among the GSH/GSSG indicators, DSS and HSYA performed better. In terms of SOD content and apoptotic rate, the SOD level showed the opposite trend compared with H2O2 group. For the expression of LC3, Beclin-1 and P62, DHI and its components all had significant effects. When miR-19a or SIRT1 was inhibited, Sal B (0.5 μg/ml) can not decrease autophagy-related protein effectively. DHI and its components all had anti-autophagy effects. And Sal B (0.5 μg/ml) inhibited HUVECs autophagy via miR-19a/SIRT1 pathway. [Display omitted]
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2021.153480