Convolutional neural network in nasopharyngeal carcinoma: how good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI?
Purpose Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of the CNN for delineating primary nasopharyngeal carcinoma (NPC) o...
Gespeichert in:
Veröffentlicht in: | Japanese journal of radiology 2021-06, Vol.39 (6), p.571-579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of the CNN for delineating primary nasopharyngeal carcinoma (NPC) on non-contrast-enhanced images and compared the performance to that on ce-MRI.
Materials and methods
We retrospectively analyzed primary NPC in 195 patients using a well-established CNN, U-Net, for tumor delineation on the non-contrast-enhanced fat-suppressed (fs)-T2W, ce-T1W and ce-fs-T1W images. The CNN-derived delineations were compared to manual delineations to obtain Dice similarity coefficient (DSC) and average surface distance (ASD). The DSC and ASD on fs-T2W were compared to those on ce-MRI. Primary tumor volumes (PTVs) of CNN-derived delineations were compared to that of manual delineations.
Results
The CNN for NPC delineation on fs-T2W images showed similar DSC (0.71 ± 0.09) and ASD (0.21 ± 0.48 cm) to those on ce-T1W images (0.71 ± 0.09 and 0.17 ± 0.19 cm, respectively) (
p
> 0.05), and lower DSC but similar ASD to ce-fs-T1W images (0.73 ± 0.09,
p
0.05). The CNN overestimated PTVs on all sequences (
p
|
---|---|
ISSN: | 1867-1071 1867-108X |
DOI: | 10.1007/s11604-021-01092-x |