Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology
[Display omitted] Patient responses to doses vary widely, and affording limited doses to such a diverse population will inevitably yield unsatisfactory therapeutic effects and even adverse effects. In Particular, there is an urgent demand for a dynamic dose-control platform for pediatric patients, m...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2021-03, Vol.596, p.120201-120201, Article 120201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Patient responses to doses vary widely, and affording limited doses to such a diverse population will inevitably yield unsatisfactory therapeutic effects and even adverse effects. In Particular, there is an urgent demand for a dynamic dose-control platform for pediatric patients, many of whom require diverse doses and flexible dose adjustments. The aim of this study was to explore the possibility of using a drop-on-powder (DoP) technology-based desktop 3D printer to build a dynamic dose-control platform for theophylline (TP) and metoprolol tartrate (MT). In addition, the impact of drug loading patterns on the accuracy of dose regulation was also assessed. All of the printed tablets exhibited good mechanical properties and satisfactory structural integrity. On printing tablets with target drug doses, the accuracy was in the range of 91.2~108% with a small variation coefficient in the range of 0.5~3.2%. Compared with traditional divided-dose methods, drop-on-powder 3D printing technology exhibited higher accuracy in dose regulation, but had less impact on the in vitro drug release behavior. The results in this work clearly indicate the possibility and ability of DoP technology as a promising method for constructing a dynamic dose-control platform for the fabrication of personalized medicines for pediatric patients. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2021.120201 |