Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry
The variational wave functions based on neural networks have recently started to be recognized as a powerful ansatz to represent quantum many-body states accurately. In order to show the usefulness of the method among all available numerical methods, it is imperative to investigate the performance i...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2021-04, Vol.33 (17), p.174003, Article 174003 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The variational wave functions based on neural networks have recently started to be recognized as a powerful ansatz to represent quantum many-body states accurately. In order to show the usefulness of the method among all available numerical methods, it is imperative to investigate the performance in challenging many-body problems for which the exact solutions are not available. Here, we construct a variational wave function with one of the simplest neural networks, the restricted Boltzmann machine (RBM), and apply it to a fundamental but unsolved quantum spin Hamiltonian, the two-dimensional J (1)-J (2) Heisenberg model on the square lattice. We supplement the RBM wave function with quantum-number projections, which restores the symmetry of the wave function and makes it possible to calculate excited states. Then, we perform a systematic investigation of the performance of the RBM. We show that, with the help of the symmetry, the RBM wave function achieves state-of-the-art accuracy both in ground-state and excited-state calculations. The study shows a practical guideline on how we achieve accuracy in a controlled manner. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/1361-648X/abe268 |