Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx

Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/ceri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-04, Vol.60 (16), p.8798-8802
Hauptverfasser: Duan, Yan‐Xin, Zhou, Yi‐Tong, Yu, Zhen, Liu, Dong‐Xue, Wen, Zi, Yan, Jun‐Min, Jiang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/cerium oxide (Bi/CeOx) catalyst, which exhibits not only high current density (149 mA cm−2), but also unprecedented production rate (2600 μmol h−1 cm−2) with high Faradaic efficiency (FE, 92 %) for HCOOH generation in aqueous media. Furthermore, Bi/CeOx also shows favorable stability over 34 h. We hope this work could offer an attractive and promising strategy to develop efficient catalysts for CO2 electroreduction with superior activity and desirable stability. The limited current density, production rate as well as selectivity hinder the improvement of HCOOH production from CO2 electroreduction. Here, bismuth/cerium oxide (Bi/CeOx) displays outstanding performances for CO2 electroreduction to HCOOH, which not only shows excellent selectivity, but also achieves a high current density (149 mA cm−2) and especially the maximum HCOOH production rate (2600 μmol h−1 cm−2) ever reported.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202015713