Deletion of Sox9 in the liver leads to hepatic cystogenesis in mice by transcriptionally downregulating Sec63

Hepatic cysts are found in heterogeneous disorders with different pathogeneses, of which simple hepatic cysts and polycystic liver diseases are two major types. The process of hepatic cytogenesis for these two diseases is caused by defects in remodelling of the ductal plate during biliary tract deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2021-05, Vol.254 (1), p.57-69
Hauptverfasser: Xu, Wen‐Ping, Cui, Ya‐Lu, Chen, Li‐Lin, Ding, Kai, Ding, Chen‐Hong, Chen, Fei, Zhang, Xin, Xie, Wei‐Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatic cysts are found in heterogeneous disorders with different pathogeneses, of which simple hepatic cysts and polycystic liver diseases are two major types. The process of hepatic cytogenesis for these two diseases is caused by defects in remodelling of the ductal plate during biliary tract development, which is called ductal plate malformation. SOX9 is a transcription factor participating in the process of bile duct development, and thus, its dysregulation may play important roles in hepatic cystogenesis. SEC63 encodes an endoplasmic reticulum membrane protein that is mutated in human autosomal dominant polycystic liver disease. However, the transcriptional regulation of SEC63 is largely unknown. In the present study, a liver‐specific Sox9 knockout (Sox9LKO) mouse was generated to investigate the roles and underlying mechanism of SOX9 in hepatic cystogenesis. We found that hepatic cysts began to be observed in Sox9LKO mice at 6 months of age. The number and size of cysts increased with age in Sox9LKO mice. In addition, the characteristics of hepatic cytogenesis, including the activation of proliferation, absence of primary cilium, and disorder of polarity in biliary epithelial cells, were detected in the livers of Sox9LKO mice. RNAi silencing of SOX9 in human intrahepatic biliary epithelial cells (HIBEpic) resulted in increased proliferation and reduced formation of the primary cilium. Moreover, Sec63 was downregulated in primary biliary epithelial cells from Sox9LKO mice and SEC63 in HIBEpic transfected with siSOX9. Chromatin immunoprecipitation assays and luciferase reporter assays further demonstrated that SOX9 transcriptionally regulated the expression of SEC63 in biliary epithelial cells. Importantly, the overexpression of SEC63 in HIBEpic partially reversed the effects of SOX9 depletion on the formation of primary cilia and cell proliferation. These findings highlight the biological significance of SOX9 in hepatic cytogenesis and elucidate a novel molecular mechanism underlying hepatic cytogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
ISSN:0022-3417
1096-9896
DOI:10.1002/path.5636