The Effect of Class Imbalance on Precision-Recall Curves

In this note, I study how the precision of a binary classifier depends on the ratio r of positive to negative cases in the test set, as well as the classifier's true and false-positive rates. This relationship allows prediction of how the precision-recall curve will change with r, which seems n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2021-04, Vol.33 (4), p.853-857
1. Verfasser: Williams, Christopher K. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, I study how the precision of a binary classifier depends on the ratio r of positive to negative cases in the test set, as well as the classifier's true and false-positive rates. This relationship allows prediction of how the precision-recall curve will change with r, which seems not to be well known. It also allows prediction of how F-beta and the precision gain and recall gain measures of Flach and Kull (2015) vary with r.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco_a_01362