The Effect of Class Imbalance on Precision-Recall Curves
In this note, I study how the precision of a binary classifier depends on the ratio r of positive to negative cases in the test set, as well as the classifier's true and false-positive rates. This relationship allows prediction of how the precision-recall curve will change with r, which seems n...
Gespeichert in:
Veröffentlicht in: | Neural computation 2021-04, Vol.33 (4), p.853-857 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, I study how the precision of a binary classifier depends on the ratio r of positive to negative cases in the test set, as well as the classifier's true and false-positive rates. This relationship allows prediction of how the precision-recall curve will change with r, which seems not to be well known. It also allows prediction of how F-beta and the precision gain and recall gain measures of Flach and Kull (2015) vary with r. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/neco_a_01362 |