Core-shell chitosan/PVA-based nanofibrous scaffolds loaded with Satureja mutica or Oliveria decumbens essential oils as enhanced antimicrobial wound dressing
[Display omitted] Wounds are prone to bacterial infections, which cause a delayed healing process. Regarding the emergence of bacterial resistance to common antibiotics, using natural antimicrobial agents can be beneficial. Chitosan is a biological polymer, which has shown partial antioxidant and an...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2021-03, Vol.597, p.120288-120288, Article 120288 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Wounds are prone to bacterial infections, which cause a delayed healing process. Regarding the emergence of bacterial resistance to common antibiotics, using natural antimicrobial agents can be beneficial. Chitosan is a biological polymer, which has shown partial antioxidant and antimicrobial activities. In this study, core-shell nanofibrous scaffolds composed of chitosan (CS)/polyvinyl alcohol (PVA) as the core and polyvinylpyrrolidone (PVP)/ maltodextrin (MD) as the shell were developed. Satureja mutica (S. mutica) or Oliveria decumbens (O. decumbens) essential oil (EO) was encapsulated into the core of the produced scaffolds. The broth microdilution analysis showed significant antimicrobial activity of the EOs. The SEM analysis indicated that the unloaded and loaded core-shell scaffolds with S. mutica or O. decumbens EO had a uniform, beadless structure with fiber mean diameters of 210 ± 50, 250 ± 45, and 225 ± 46 nm, respectively. The CS/PVA-PVP/MD and CS/PVA/EO-PVP/MD scaffolds indicated suitable mechanical properties. The addition of the studied EOs enhanced the antioxidant activity of the scaffolds. The antimicrobial test of produced scaffolds showed that loading of 10% S. mutica or O. decumbens EO could broaden the microbicidal activity of the CS/PVA-PVP/MD scaffolds. These results revealed that the CS/PVA/EO-PVP/MD nanofibrous scaffolds are promising candidates for wound dressing. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2021.120288 |