New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases
Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an importa...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2021-06, Vol.58 (6), p.2812-2823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growing evidence has indicated that iron deposition is one of the key factors leading to neuronal death in the neurodegenerative diseases. Ferritin is a hollow iron storage protein composed of 24 subunits of two types, ferritin heavy chain (FTH) and ferritin light chain (FTL), which plays an important role in maintaining iron homeostasis. Recently, the discovery of extracellular ferritin and ferritin in exosomes indicates that ferritin might be not only an iron storage protein within the cell, but might also be an important factor in the regulation of tissue and body iron homeostasis. In this review, we first described the structural characteristics, regulation and the physiological functions of ferritin. Secondly, we reviewed the current evidence concerning the mechanisms underlying the secretion of ferritin and the possible role of secreted ferritin in the brain. Then, we summarized the relationship between ferritin and the neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD) and neuroferritinopathy (NF). Given the importance and relationship between iron and neurodegenerative diseases, understanding the role of ferritin in the brain can be expected to contribute to our knowledge of iron dysfunction and neurodegenerative diseases. |
---|---|
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-020-02277-7 |