Genotype–Phenotype Relations for Isolated Dystonia Genes: MDSGene Systematic Review

ABSTRACT This comprehensive MDSGene review is devoted to 7 genes — TOR1A, THAP1, GNAL, ANO3, PRKRA, KMT2B, and HPCA — mutations in which may cause isolated dystonia. It followed MDSGene's standardized data extraction protocol and screened a total of ~1200 citations. Phenotypic and genotypic dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2021-05, Vol.36 (5), p.1086-1103
Hauptverfasser: Lange, Lara M., Junker, Johanna, Loens, Sebastian, Baumann, Hauke, Olschewski, Luisa, Schaake, Susen, Madoev, Harutyun, Petkovic, Sonja, Kuhnke, Neele, Kasten, Meike, Westenberger, Ana, Domingo, Aloysius, Marras, Connie, König, Inke R., Camargos, Sarah, Ozelius, Laurie J., Klein, Christine, Lohmann, Katja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT This comprehensive MDSGene review is devoted to 7 genes — TOR1A, THAP1, GNAL, ANO3, PRKRA, KMT2B, and HPCA — mutations in which may cause isolated dystonia. It followed MDSGene's standardized data extraction protocol and screened a total of ~1200 citations. Phenotypic and genotypic data on ~1200 patients with 254 different mutations were curated and analyzed. There were differences regarding age at onset, site of onset, and distribution of symptoms across mutation carriers in all 7 genes. Although carriers of TOR1A, THAP1, PRKRA, KMT2B, or HPCA mutations mostly showed childhood and adolescent onset, patients with GNAL and ANO3 mutations often developed first symptoms in adulthood. GNAL and KMT2B mutation carriers frequently have 1 predominant site of onset, that is, the neck (GNAL) or the lower limbs (KMT2B), whereas site of onset in DYT‐TOR1A, DYT‐THAP1, DYT‐ANO3, DYT‐PRKRA, and DYT‐HPCA was broader. However, in most DYT‐THAP1 and DYT‐ANO3 patients, dystonia first manifested in the upper half of the body (upper limb, neck, and craniofacial/laryngeal), whereas onset in DYT‐TOR1A, DYT‐PRKRA and DYT‐HPCA was frequently observed in an extremity, including both upper and lower ones. For ANO3, a segmental/multifocal distribution was typical, whereas TOR1A, PRKRA, KMT2B, and HPCA mutation carriers commonly developed generalized dystonia. THAP1 mutation carriers presented with focal, segmental/multifocal, or generalized dystonia in almost equal proportions. GNAL mutation carriers rarely showed generalization. This review provides a comprehensive overview of the current knowledge of hereditary isolated dystonia. The data are also available in an online database (http://www.mdsgene.org), which additionally offers descriptive summary statistics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
ISSN:0885-3185
1531-8257
DOI:10.1002/mds.28485