Melamine Foam Derived 2H/1T MoS2 as Flexible Interlayer with Efficient Polysulfides Trapping and Fast Li+ Diffusion to Stabilize Li–S Batteries
Lithium–sulfur (Li–S) batteries featuring high-energy densities are identified as a hopeful energy storage system but are strongly impeded by shuttle effect and sluggish redox chemistry of sulfur cathodes. Herein, annealed melamine foam loaded 2H/1T MoS2 (CF@2H/1T MoS2) is prepared as a multifunctio...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-02, Vol.13 (5), p.6229-6240 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium–sulfur (Li–S) batteries featuring high-energy densities are identified as a hopeful energy storage system but are strongly impeded by shuttle effect and sluggish redox chemistry of sulfur cathodes. Herein, annealed melamine foam loaded 2H/1T MoS2 (CF@2H/1T MoS2) is prepared as a multifunctional interlayer to inhibit the shuttle effect, improve redox kinetics, and reduce the charge–discharge polarization of Li–S batteries. The CF@2H/1T MoS2 becomes fragmented structures after assembling the cell, which not only benefits to adsorb and catalyze LiPSs but also to significantly buffer the volume expansion due to a large number of gaps between fragmented structures. Meanwhile, the batteries based on CF@2H/1T MoS2 interlayer delivers high areal capacity of 5.1 mAh cm–2 under high sulfur mass loading of 7.6 mg cm–2 at 0.2 C. Importantly, the experiments of in situ Raman spectra demonstrate that the CF@2H/1T MoS2 can obviously inhibit the shuttle effect by effectively adsorbing and catalyzing LiPSs. This novel design idea and low-cost melamine foam raw material open up a new way for the application of high-energy density Li–S batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c19725 |