High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes
Solid oxide fuel cells (SOFCs) are a promising solution to a sustainable energy future. However, cell performance and stability remain a challenge. Durable, nanostructured electrodes fabricated via a simple, cost-effective method are an effective way to address these problems. In this work, both the...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-02, Vol.13 (4), p.4993-4999 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid oxide fuel cells (SOFCs) are a promising solution to a sustainable energy future. However, cell performance and stability remain a challenge. Durable, nanostructured electrodes fabricated via a simple, cost-effective method are an effective way to address these problems. In this work, both the nanostructured PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) cathode and Ni–Ce0.8Sm0.2O1.9 (SDC) anode are fabricated on a porous yttria-stabilized zirconia (YSZ) backbone via solution infiltration. Symmetrical cells with a configuration of PBSCF|YSZ|PBSCF show a low interfacial polarization resistance of 0.03 Ω cm2 with minimal degradation at 700 °C for 600 h. Ni-SDC|YSZ|PBSCF single cells exhibit a peak power density of 0.62 W cm–2 at 650 °C operated on H2 with good thermal cycling stability for 110 h. Single cells also show excellent coking tolerance with stable operation on CH4 for over 120 h. This work offers a promising pathway toward the development of high-performance and durable SOFCs to be powered by natural gas. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c18434 |