Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior

Different treatments of autoclaving, pullulanase debranching and/or ultrasound were applied to prepare debranched lentil starch (DBLS). Their fine structures can affect the retrogradation patterns of DBLSs, which consequently could affect their potential use as delivery carrier of sensitive bioactiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2021-03, Vol.173, p.293-306
Hauptverfasser: Ren, Namei, Ma, Zhen, Li, Xiaoping, Hu, Xinzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different treatments of autoclaving, pullulanase debranching and/or ultrasound were applied to prepare debranched lentil starch (DBLS). Their fine structures can affect the retrogradation patterns of DBLSs, which consequently could affect their potential use as delivery carrier of sensitive bioactive compounds. An attempt was made to use these DBLSs as wall materials to encapsulate rutin, aiming to improve the bioaccessibility, meanwhile to enhance the aqueous solubility and stability of rutin molecules. Their encapsulation efficiency, structural characteristics, thermal stability, morphological features, antioxidant activity and in vitro release behavior under simulated upper gastrointestinal tract environment were evaluated. The results suggested that rutin was dispersed in the DBLS polymer matrix, showing the amorphous nature that further authenticates the encapsulation and entrapment of rutin. The structural analyses of microparticles revealed that rutin could interacted with DBLS biopolymer chains by hydrogen bonds, making the starch molecular chains less susceptible to interact with themselves for reordering. The encapsulation efficiency was found to be in an opposite trend with those values obtained for relative crystallinity, melting enthalpy, degree of order/double helices of DBLS wall materials before encapsulation. The release rate results indicated that DBLS carrier with lower Mw, DPn and higher molecular order was beneficial for the slower release of rutin encapsulated in the microparticles. [Display omitted] •Rutin was dispersed in DBLS polymer matrix, showing the amorphous nature.•The average crystallite size of microparticles ranged from 107.38 to 246.40 nm.•Encapsulation efficiency was in an opposite trend with relative crystallinity of DBLS.•DBLS carrier with higher molecular order was beneficial for slower release of rutin.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.01.122