Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction

Surface engineering is of importance to reduce the reaction barrier of oxygen evolution reaction (OER). Herein, the NiFe Prussian blue analogue (NiFe-PBA)-F catalyst with a multilevel structure was obtained from NiFe-PBAs via a fluorination strategy, which presents an ultralow OER overpotential of 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-02, Vol.13 (4), p.5142-5152
Hauptverfasser: Ma, Fahao, Wu, Qian, Liu, Mu, Zheng, Liren, Tong, Fengxia, Wang, Zeyan, Wang, Peng, Liu, Yuanyuan, Cheng, Hefeng, Dai, Ying, Zheng, Zhaoke, Fan, Yuchen, Huang, Baibiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface engineering is of importance to reduce the reaction barrier of oxygen evolution reaction (OER). Herein, the NiFe Prussian blue analogue (NiFe-PBA)-F catalyst with a multilevel structure was obtained from NiFe-PBAs via a fluorination strategy, which presents an ultralow OER overpotential of 190 mV at 10 mA cm–2 in alkaline solution, with a small Tafel slope of 57 mV dec–1 and excellent stability. Interestingly, surface fluorination engineering could achieve a controllable removal of ligands of the cyan group, contributing to keep the framework structure of NiFe-PBAs. Particularly, NiFe-PBAs-F undergoes a dramatic reconstruction with the dynamic migration of F ions, which creates more active sites of F-doped NiFeOOH and affords more favorable adsorption of oxygen intermediates. Density functional theory calculations suggest that F doping increases the state density of Ni 3d orbital around the Fermi level, thus improving the conductivity of NiFeOOH. Furthermore, based on our experimental results, the lattice oxygen oxidation mechanism for NiFe-PBAs-F was proposed. Our work not only provides a new pathway to realize the controllable pyrolysis of NiFe-PBAs but also gives more insights into the reconstruction and the mechanism for the OER process.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c20886