Stability and accuracy of difference schemes for hyperbolic problems
Bounds for the error order and error constant of full- and semidiscretizations of hyperbolic problems are given. In order to be able to compare fulldiscretizations a scaling is introduced. This scaling reflects the amount of work needed to perform one time step. Using the semidiscretization associat...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1985-01, Vol.12, p.91-108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bounds for the error order and error constant of full- and semidiscretizations of hyperbolic problems are given. In order to be able to compare fulldiscretizations a scaling is introduced. This scaling reflects the amount of work needed to perform one time step. Using the semidiscretization associated with the fulldiscretization lower bounds for these scaled error constants are given. These results are derived using the order star technique. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(85)90009-3 |