A sparse multiscale nonlinear autoregressive model for seizure prediction
Accurate seizure prediction is highly desirable for medical interventions such as responsive electrical stimulation. We aim to develop a classification model that can predict seizures by identifying preictal states, i.e. the precursor of a seizure, based on multi-channel intracranial electroencephal...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2021-04, Vol.18 (2), p.26012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate seizure prediction is highly desirable for medical interventions such as responsive electrical stimulation. We aim to develop a classification model that can predict seizures by identifying preictal states, i.e. the precursor of a seizure, based on multi-channel intracranial electroencephalography (iEEG) signals.
A two-level sparse multiscale classification model was developed to classify interictal and preictal states from iEEG data. In the first level, short time-scale linear dynamical features were extracted as autoregressive (AR) model coefficients; arbitrary (usually long) time-scale linear and nonlinear dynamical features were extracted as Laguerre-Volterra AR model coefficients; root-mean-square error of model prediction was used as a feature representing model unpredictability. In the second level, all features were fed into a sparse classifier to discriminate the iEEG data between interictal and preictal states.
. The two-level model can accurately classify seizure states using iEEG data recorded from ten canine and human subjects. Adding arbitrary (usually long) time-scale and nonlinear features significantly improves model performance compared with the conventional AR modeling approach. There is a high degree of variability in the types of features contributing to seizure prediction across different subjects.
. This study suggests that seizure generation may involve distinct linear/nonlinear dynamical processes caused by different underlying neurobiological mechanisms. It is necessary to build patient-specific classification models with a wide range of dynamical features. |
---|---|
ISSN: | 1741-2560 1741-2552 |
DOI: | 10.1088/1741-2552/abdd43 |