Self-averaging in many-body quantum systems out of equilibrium: Time dependence of distributions
In a disordered system, a quantity is self-averaging when the ratio between its variance for disorder realizations and the square of its mean decreases as the system size increases. Here, we consider a chaotic disordered many-body quantum system and search for a relationship between self-averaging b...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-12, Vol.102 (6-1), p.062126-062126, Article 062126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a disordered system, a quantity is self-averaging when the ratio between its variance for disorder realizations and the square of its mean decreases as the system size increases. Here, we consider a chaotic disordered many-body quantum system and search for a relationship between self-averaging behavior and the properties of the distributions over disorder realizations of various quantities and at different timescales. An exponential distribution, as found for the survival probability at long times, explains its lack of self-averaging, since the mean and the dispersion are equal. Gaussian distributions, however, are obtained for both self-averaging and non-self-averaging quantities. Our studies show also that one can make conclusions about the self-averaging behavior of one quantity based on the distribution of another related quantity. This strategy allows for semianalytical results, and thus circumvents the limitations of numerical scaling analysis, which are restricted to few system sizes. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.102.062126 |