Suppression of Nanog inhibited cell migration and increased the sensitivity of colorectal cancer cells to 5-fluorouracil
Nanog is a major transcription factor related to cellular multipotency that plays important roles in the development of tumor cells, drug resistance, migration, and stemness; indicating its great potential as a therapeutic target for various malignancies including colorectal cancer (CRC). Therefore,...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2021-03, Vol.894, p.173871-173871, Article 173871 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanog is a major transcription factor related to cellular multipotency that plays important roles in the development of tumor cells, drug resistance, migration, and stemness; indicating its great potential as a therapeutic target for various malignancies including colorectal cancer (CRC). Therefore, this study was aimed to evaluate the Nanog suppression effect using small interference RNA (siRNA) combined with 5-fluorouracil (5-FU) on CRC cells. Nanog-overexpressing SW-480 cells were transfected with Nanog si-RNA and treated with 5-FU, in combination or separately. Subsequently, it was observed that Nanog expression was significantly reduced after transfection of SW-480 cells using Nanog siRNA in mRNA and protein levels. Furthermore, Nanog knockdown significantly increased CRC cell sensitivity to 5-FU drug via modulating Bax and Bcl-2 mRNA expression. Also, Nanog knockdown and 5-FU treatment cooperatively decreased the migration and self-renewal ability of SW-480 cells by regulating the expression of relevant genes. Moreover, combination therapy led to cell cycle arrest at the sub-G1 phase in CRC cells. In conclusion, our results indicated that Nanog may play an important role in the drug sensitivity, migration, and self-renewal of CRC cells; suggesting Nanog as a promising target in combination with 5-FU for the development of new therapeutic approaches for CRC. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2021.173871 |