Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by Aspergillus niger ITV02 under liquid state fermentation
The objective of this work was to evaluate the biochemical characteristics of an enzymatic extract obtained from autochthonous fungus Aspergillus niger ITV02 and its application in the enzymatic hydrolysis of wheat straw and corn stubble pretreated by steam explosion. The enzymatic extract was obtai...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2022-02, Vol.69 (1), p.198-208 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this work was to evaluate the biochemical characteristics of an enzymatic extract obtained from autochthonous fungus Aspergillus niger ITV02 and its application in the enzymatic hydrolysis of wheat straw and corn stubble pretreated by steam explosion. The enzymatic extract was obtained by submerged fermentation using delignified sweet sorghum bagasse as a carbon source. The results obtained showed that the enzymatic extract had β‐glucosidase and endoglucanase activities. The effects of pH and temperature on cellulase activity were evaluated and its thermostability was determined. The optimal parameters of the β‐glucosidase and endoglucanase activities obtained were pH 5 and 70 °C. The enzymatic extract of A. niger ITV02 was used to hydrolyze wheat straw and corn stubble, and the hydrolysis yields were compared with those obtained by a commercial cellulase (Celluclast 1.5L NS 50013) and CellicCTec3. The results showed that with the use the mixture of Celluclast 1.5L‐A. niger ITV02 and CellicCTec3‐A. niger ITV02 in the hydrolysis, conversions of 86.36% and 67.8% were obtained, respectively. Glucose production for the mixture extract increased 2.15 times more than when the enzyme was used independently alone. The present work shows that A. niger ITV02 has a potential as an enzyme producer for lignocellulosic hydrolysis. |
---|---|
ISSN: | 0885-4513 1470-8744 |
DOI: | 10.1002/bab.2097 |