Nebulosa recovers single-cell gene expression signals by kernel density estimation
Abstract Summary Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression....
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2021-08, Vol.37 (16), p.2485-2487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Summary
Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression.
Availability and implementation
Nebulosa can be easily installed from www.github.com/powellgenomicslab/Nebulosa.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btab003 |