Nebulosa recovers single-cell gene expression signals by kernel density estimation

Abstract Summary Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2021-08, Vol.37 (16), p.2485-2487
Hauptverfasser: Alquicira-Hernandez, Jose, Powell, Joseph E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Summary Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression. Availability and implementation Nebulosa can be easily installed from www.github.com/powellgenomicslab/Nebulosa. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btab003