Expression of ice recrystallization inhibition protein in transgenic potato lines associated with reduced electrolyte leakage and efficient recovery post freezing injury

•IRI3 transcript enhancement renders transgenic potato tolerant to freezing stress.•Reduced electrolyte leakage was found associated with IRI3 transcript abundance in transgenic potato lines.•Efficient recovery post freezing injury was observed in transgenic potato lines when compared with non-trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2021-02, Vol.327, p.97-105
Hauptverfasser: Aaliya, Khadija, Nasir, Idrees Ahmad, Khan, Anwar, Toufiq, Nida, Yousaf, Iqra, Adeyinka, Olawale Samuel, Iftikhar, Sehrish, Farooq, Abdul Munim, Tabassum, Bushra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•IRI3 transcript enhancement renders transgenic potato tolerant to freezing stress.•Reduced electrolyte leakage was found associated with IRI3 transcript abundance in transgenic potato lines.•Efficient recovery post freezing injury was observed in transgenic potato lines when compared with non-transgenic lines. Potato (Solanum tuberosum L.) is considered to be frost-susceptible as short spells of frost can reduce the tuber yield and quality. Ice recrystallization inhibition (IRI) protein helps prevent growth of ice crystals in the cell apoplast during frost and help prevent damage associated with freezing stress. In this study, we investigated the in planta potential of Lolium perenne derived IRI3 transgene in improving the tolerance of transgenic potato lines for freezing stress. The codon optimized IRI3 transgene was introduced into potato cultivar Diamant through Agrobacterium mediated transformation. Three transgenic potato lines were successfully generated which were confirmed for transgene insertion and genomic integration by polymerase chain reaction and Southern blot. It was evident that the IRI3 transcript decreased in initial 24 h of cold stress treatment while the IRI3 mRNA expression up regulated in subsequent hours of cold treatment with maximum increase to 20 folds at 96 h post stress. A similar trend was also revealed in ion-leakage assay which showed that during cold stress, the transgenic potato lines depicted reduced ion leakage of 14–22% as compared to non-transgenic control plants. Further, the generated transgenic potato lines were tolerant to the frost spell in quarantine field conditions as compared to the non-transgenic potato lines. Additionally, the transgenic lines exhibited efficient recovery post frost injury in field conditions. The biochemical profiles of chlorophyll, proline and higher levels of antioxidant enzyme (superoxide dismutase, Catalase) activity and malondialdehyde levels showed that despite the phenotypic impact of low temperature, the transgenic potato lines quickly adjusted to maintain their cellular homeostasis post freezing stress by increasing the antioxidant defenses. This study suggests that up regulation of IRI3 transcript and regulatory network of cold stress response in transgenic potato lines improve frost tolerance and help stabilize yield in cultivated potato.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2021.01.003