d-Glycero-β‑d-mannoheptose Phosphate 7‑O‑Modifications
Pathogen-associated molecular patterns activate the immune system via pattern recognition receptors. Recently, newly discovered pathogen-associated molecular patterns, d-glycero-β-d-mannoheptose phosphate and d-glycero-β-d-mannoheptose 1,7-biphosphate, were shown to induce a TRAF-interacting protein...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2021-02, Vol.86 (3), p.2184-2199 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pathogen-associated molecular patterns activate the immune system via pattern recognition receptors. Recently, newly discovered pathogen-associated molecular patterns, d-glycero-β-d-mannoheptose phosphate and d-glycero-β-d-mannoheptose 1,7-biphosphate, were shown to induce a TRAF-interacting protein with a forkhead-associated domain-dependent immune response in human embryonic kidney cells and colonic epithelial cells. Concurrently, ADP-heptose was shown to bind α-kinase 1 and activate TIFA via phosphorylation leading to an immune cascade to ultimately activate NF-κB. These pathogen-associated molecular patterns have raised interest in the pharmaceutical industry for their potential use as immunomodulators. However, little is understood about the host cell uptake of d-glycero-β-d-mannoheptose phosphate, d-glycero-β-d-mannoheptose 1,7-biphosphate, and ADP-heptose in vivo and derivatives of these molecules are needed to interrogate this. In this regard, herein we describe 7-O-modifications of d-glycero-β-d-mannoheptose phosphate to produce molecular probes toward the development of a useful toolbox for biologists. A convergent strategy that involves introduction of a substituent at O-7 before alkene oxidation was investigated and proved successful in the generation of a range of molecular probes. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.0c02333 |