Fabrication Scheme for Obtaining Transparent, Flexible, and Water-Insoluble Silk Films from Apparently Dissolved Silk-Gland Fibroin of Bombyx mori Silkworm

Films from silk fibroin protein are one of the most promising biomaterials because of their exquisite balance between mechanical properties and biocompatibility. Numerous schemes have been proposed for processing fibroin film, utilizing liquid silk fibroin (LSF) or regenerated silk fibroin (RSF). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2017-12, Vol.3 (12), p.3207-3214
Hauptverfasser: Yoshioka, Taiyo, Hata, Tamako, Kojima, Katsura, Nakazawa, Yasumoto, Kameda, Tsunenori
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Films from silk fibroin protein are one of the most promising biomaterials because of their exquisite balance between mechanical properties and biocompatibility. Numerous schemes have been proposed for processing fibroin film, utilizing liquid silk fibroin (LSF) or regenerated silk fibroin (RSF). The films cast from LSF or RSF in the solution state are water-soluble, and therefore require postproduction treatment inducing β-sheet formation, to render them insoluble in water. Many kinds of postproduction treatments, using alcohol–water solution, water vapor, or controlled temperature, have been developed. However, the tuning and reproducibility of such treatments are quite sensitive and frequently render the fibroin films less flexible or even brittle because of the formation of an over content of β-sheet. To overcome this, we developed a novel scheme for fibroin processing using silk-gland fibroin (SGF). The essence of this scheme is to create a softly solidified fibroin-gel state of the silk glands with an imperfect β-sheet structure, by treating them with an ethanol/water mixture. Such a fibroin gel was found to dissolve in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The SGF film cast from the HFIP solution shows a flexible and water-insoluble nature with high reproducibility. In addition to this improvement, the SGF film produced by this method contains a significantly low level of residual HFIP molecules compared to the traditional RSF films prepared from an HFIP solution. The mechanism underlying these advantageous characteristics was investigated from the structural viewpoint, by using techniques such as 13C solid-state NMR, differential scanning calorimetry, and wide-angle X-ray diffraction.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.7b00602