Glandular Trichome-Derived Mono- and Sesquiterpenes of Tomato Have Contrasting Roles in the Interaction with the Potato Aphid Macrosiphum euphorbiae

Secondary metabolites produced in glandular trichomes of tomato are involved in interactions with herbivores. In cultivated tomato ( Solanum lycopersicum ) glandular trichomes accumulate a blend of abundant monoterpenes and smaller amounts of a few sesquiterpenes. These mono- and sesquiterpenes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2021-02, Vol.47 (2), p.204-214
Hauptverfasser: Wang, Fumin, Park, Yong-Lak, Gutensohn, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secondary metabolites produced in glandular trichomes of tomato are involved in interactions with herbivores. In cultivated tomato ( Solanum lycopersicum ) glandular trichomes accumulate a blend of abundant monoterpenes and smaller amounts of a few sesquiterpenes. These mono- and sesquiterpenes are synthesized by three terpene synthases, TPS20 as well as TPS9 and TPS12, respectively. To study effects of these terpenes on performance and choice behavior of potato aphid ( Macrosiphum euphorbiae ), we utilized two tomato trichome mutants, hairless and odorless-2 , that are differently affected in mono- and sesquiterpene production. Non-choice assays demonstrated that longevity and fecundity of M. euphorbiae were increased when kept on the trichome mutants. A principal component analysis of these aphid performance parameters and terpene production in the trichome mutants indicated that longevity and fecundity of M. euphorbiae were negatively correlated with production of the TPS12-derived sesquiterpenes β-caryophyllene and α-humulene. While we had previously shown that addition of pure β-caryophyllene/α-humulene to an artificial feeding diet affected M. euphorbiae apterae survivorship and feeding behavior, no such effects were observed here upon addition of a mixture of pure TPS20-derived monoterpenes. In olfactometer assays M. euphorbiae alates displayed differential choice behaviors towards the hairless and odorless-2 mutants suggesting a role of TPS20-derived monoterpenes in aphid attraction, which was further confirmed using a mixture of pure monoterpenes. Our analyses revealed contrasting roles of glandular trichome-derived terpenes in S. lycopersicum . While TPS12-derived sesquiterpenes contribute to host plant resistance against M. euphorbiae , TPS20-derived monoterpenes appear to be exploited as cue for host plant orientation by aphids.
ISSN:0098-0331
1573-1561
DOI:10.1007/s10886-021-01243-4