In Vitro Enzymatic Degradation of Tissue Grafts and Collagen Biomaterials by Matrix Metalloproteinases: Improving the Collagenase Assay

Matrix metalloproteinase-1 and -8 are active during the wound healing and remodelling processes, degrading native extracellular matrix and implantable devices. However, traditional in vitro assays utilize primarily matrix metalloproteinase-1 to mimic the in vivo degradation microenvironment. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2017-09, Vol.3 (9), p.1922-1932
Hauptverfasser: Helling, A.L, Tsekoura, E.K, Biggs, M, Bayon, Y, Pandit, A, Zeugolis, D.I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix metalloproteinase-1 and -8 are active during the wound healing and remodelling processes, degrading native extracellular matrix and implantable devices. However, traditional in vitro assays utilize primarily matrix metalloproteinase-1 to mimic the in vivo degradation microenvironment. Herein, we assessed the influence of various concentrations of matrix metalloproteinase- 1 and 8 (50, 100, and 200 U/mL) as a function of pH (5.5 and 7.4) and time (3, 6, 9, 12, and 24 h) on the degradation profile of three tissue grafts (chemically cross-linked Permacol, nonchemically cross-linked Permacol and nonchemically cross-linked Strattice) and a collagen biomaterial (nonchemically cross-linked collagen sponge). Chemically cross-linked and nonchemically cross-linked Permacol samples exhibited the highest resistance to enzymatic degradation, while nonchemically cross-linked collagen sponges exhibited the least resistance to enzymatic degradation. Qualitative and quantitative degradation analysis of all samples revealed a similar degradation profile over time, independently of the matrix metalloproteinase used and its respective concentration and pH. These data indicate that matrix metalloproteinase-1 and matrix metalloproteinase-8 exhibit similar degradation profile in vitro, suggesting that matrix metalloproteinase-8 should be used for collagenase assay.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.5b00563