Site occupancy preference of Bi3+ and Bi3+–Eu3+ codoped yttrium galliate phosphors for white LEDs

A variety of Bi3+-activated and Bi3+–Eu3+ codoped Y3GaO6 phosphor samples were obtained by solid-state reaction. The phase purity and crystal structure of the specimens were characterized via powder X-ray diffraction (XRD) analysis and Rietveld refinement. For the single Bi3+-doped Y3GaO6 phosphor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-02, Vol.50 (4), p.1366-1373
Hauptverfasser: Zhang, Liang, Dong, Langping, Xu, Yonghui, Yin, Shuwen, You, Hongpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A variety of Bi3+-activated and Bi3+–Eu3+ codoped Y3GaO6 phosphor samples were obtained by solid-state reaction. The phase purity and crystal structure of the specimens were characterized via powder X-ray diffraction (XRD) analysis and Rietveld refinement. For the single Bi3+-doped Y3GaO6 phosphor, two different PL peaks at 410 and 595 nm were obtained, resulting from the two different Bi3+ sites occupied. The site occupation is driven by Bi3+ ion concentration. There is an energy transfer from the Bi3+ to Eu3+ ions in the YGO:Bi3+,Eu3+ phosphors. Besides, the energy transfer mechanism, efficiencies, quantum efficiency and thermal stability have been discussed in detail, demonstrating that the sample possesses high quantum efficiency and good thermal stability. The high color-rendering index Ra (92.9, and 81.6) and low CCT (3286 K, and 3904 K) of the white light-emitting diodes (WLEDs) clearly indicate that these samples are promising candidates for WLEDs.
ISSN:1477-9226
1477-9234
DOI:10.1039/d0dt03983g