Large Stokes-shift bioorthogonal probes for STED, 2P-STED and multi-color STED nanoscopy
Synthesis and multiple STED imaging applications of four, red-emitting (610-670 nm), tetrazine-functionalized fluorescent probes (CBRD = Chemical Biology Research group Dye 1-4) with large Stokes-shift is presented. Present studies revealed the super-resolution microscopy applicability of the probes...
Gespeichert in:
Veröffentlicht in: | Methods and applications in fluorescence 2021-01, Vol.9 (1), p.015006-015006 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesis and multiple STED imaging applications of four, red-emitting (610-670 nm), tetrazine-functionalized fluorescent probes (CBRD = Chemical Biology Research group Dye 1-4) with large Stokes-shift is presented. Present studies revealed the super-resolution microscopy applicability of the probes as demonstrated through bioorthogonal labeling scheme of cytoskeletal proteins actin and keratin-19, and mitochondrial protein TOMM20. Furthermore, super-resolved images of insulin receptors in live-cell bioorthogonal labeling schemes through a genetically encoded cyclooctynylated non-canonical amino acid are also presented. The large Stokes-shifts and the wide spectral bands of the probes enabled the use of two common depletion lasers (660 nm and 775 nm). The probes were also found suitable for super-resolution microscopy in combination with two-photon excitation (2P-STED) resulting in improved spatial resolution. One of the dyes was also used together with two commercial dyes in the three-color STED imaging of intracellular structures. |
---|---|
ISSN: | 2050-6120 2050-6120 |
DOI: | 10.1088/2050-6120/abb363 |