Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy

Background Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This highlights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal (UGI) tracts are important measures in quality control of E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical endoscopy 2022, Vol.36 (1), p.57-65
Hauptverfasser: Choi, Seong Ji, Khan, Mohammad Azam, Choi, Hyuk Soon, Choo, Jaegul, Lee, Jae Min, Kwon, Soonwook, Keum, Bora, Chun, Hoon Jai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This highlights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal (UGI) tracts are important measures in quality control of EGD. To evaluate these measures in large scale, we developed an AI-driven quality control system for EGD through convolutional neural networks (CNNs) using archived endoscopic images. Methods We retrospectively collected and labeled images from 250 EGD procedures, a total of 2599 images from eight locations of the UGI tract, using the European Society of Gastrointestinal Endoscopy (ESGE) photo documentation methods. The label confirmed by five experts was considered the gold standard. We developed a CNN model for multi-class classification of EGD images to one of the eight locations and binary classification of each EGD procedure based on its completeness. Results Our CNN model successfully classified the EGD images into one of the eight regions of UGI tracts with 97.58% accuracy, 97.42% sensitivity, 99.66% specificity, 97.50% positive predictive value (PPV), and 99.66% negative predictive value (NPV). Our model classified the completeness of EGD with 89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 100.00% PPV, and 64.94% NPV. We analyzed the credibility of our model using a probability heatmap. Conclusions We constructed a CNN model that could be used in the quality control of photo documentation in EGD. Our model needs further validation with a large dataset, and we expect our model to help both endoscopists and patients by improving the quality of EGD procedures.
ISSN:0930-2794
1432-2218
DOI:10.1007/s00464-020-08236-6